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Abstract— Semantic segmentation is a fundamental and
challenging problem in medical image analysis. At present,
deep convolutional neural network plays a dominant role in
medical image segmentation. The existing problems of this field
are making less use of image information and learning few
edge features, which may lead to the ambiguous boundary and
inhomogeneous intensity distribution of the result. Since the
characteristics of different stages are highly inconsistent, these
two cannot be directly combined. In this paper, we proposed
the Attention and Edge Constraint Network (AEC-Net) to
optimize features by introducing attention mechanisms in the
lower-level features, so that it can be better combined with
higher-level features. Meanwhile, an edge branch is added
to the network which can learn edge and texture features
simultaneously. We evaluated this model on three datasets,
including skin cancer segmentation, vessel segmentation, and
lung segmentation. Results demonstrate that the proposed
model has achieved state-of-the-art performance on all datasets.

I. INTRODUCTION

Currently, an increasing number of excellent solutions
based on deep learning have been proposed in medical image
segmentation. U-Net [1] is undoubtedly one of the most
successful methods. In U-Net, however, there is a lot of
redundant information in the low-level features, which is
greatly different from the high-level features. Hence, it is
not appropriate to combine these two without modification.
Moreover, U-Net does not explicitly extract edge features.
While in [5], the author concludes that convolutional neural
network(CNN) actually learns texture features rather than
shape features. The robustness of network can be enhanced
by improving the shape learning ability of network.

Recently, attention mechanism is proposed to integrate two
different characteristics in a better way, which has increas-
ingly become a powerful tool for deep neural networks. The
Context Encoding Module is introduced in EncNet [2] to
capture global context information. Similarly, the attention
concept is leveraged into medical image segmentation in
[12], [13] as well. Attention U-Net [3] proposes the attention
mechanism in U-Net. Before splicing the corresponding
features in the encoder and decoder modules, an attention
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block is used to readjust the output characteristics of the
encoder. The module generates a gating signal that controls
the importance of features at different spatial locations.
Although it has brought about an improvement in the results,
there are still some problems of importing a large amount
of redundant information and increasing the parameters of
the network. Similar to Parsenet [4], they all make use
of the rich semantic information of high-level features to
adjust low-level features. Nevertheless, high-level features
inherently lack spatial information, using them to filter low-
level features can have unsatisfactory results.

ET-Net [6] combines edge detection and semantic seg-
mentation, which can use edge information to monitor and
guide the process of segmentation. Nonetheless, it utilizes too
few features, and the network structure for extracting edge
information is quite simple. Gated-SCNN [7] designs a new
two-stream CNN architecture. It adds a separate branch to
explicitly process shape information, which is in parallel with
classic streams. However, it doesn’t have skip connection
and U-shaped structure, which are extremely significant for
medical images.

To solve the above-mentioned problems, we propose the
Distillation Attention Module (DAM), which only uses the
information of low-level features to complete the informa-
tion screening. Without convolution operation, we reduce
the amount of parameters. Meanwhile, we are capable of
achieving the same or even better performance than the above
methods. Moreover, we introduce an edge branch based on
the U-Net network structure, and design an edge detection
module to optimize the edge learning ability of it through
the attention mechanism.

The contribution of this paper are three folds:

• We introduce an attention mechanism in the network,
which can boost the valid low-level features, and reduce
the parameters in the model to make the network
lightweight.

• We propose an edge feature structure for shape learning,
in order to make sure that the current mainstream
network structure fully utilize existing information.

• We introduce style transfer [8] to further strengthen the
edge learning ability.

Our proposed model has been evaluated on three datasets.
They all outperform the state-of-the-art methods, indicating
that our network has good generalization capability.
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Fig. 1. An overview of the AEC-Net.

II. METHOD

A. Overview

The architecture of our model is illustrated in Fig. 1.
In the encoder network, we employ ResNeXt101 [21] to
extract the feature map with different resolutions. Then, in
the decoder network, we use bilinear upsampling operations
to restore the resolution of the feature maps. In order to
further enhance the feature representations and model long-
range dependencies, we attempt to combine the features of
corresponding stages to improve the discriminative ability
of feature representations for pixel-level recognition. Instead
of combining high-level features with low-level features
directly, we first use DAM to filter redundant information
and extract more discriminating features from shallow layers.
Furthermore, we add an edge branch in the early encoding
layers and force the network to learn the shape informa-
tion of the object better. The edge branch is composed
of several EdgeBlocks and Edge Attention Modules(EAM).
In the EdgeBlock, we use BasicBlock from ResNet and
bilinear interpolation, followed by a convolution operation
to obtain the features. In order to guide the edge branch
learn more important information, EAM is designed to utilize
the consistency of higher stages. Finally, the segmentation
map and the edge map are combined together, and then
a convolution operation is carried out to achieve the best
prediction.

Fig. 2. Illustration of the distillation attention module (DAM)

B. Distillation Attention Module
Shallow layers encode finer spatial features and have

more detailed information, while they are weak in semantic
information. Deeper layers have larger receptive view and
richer semantic information, but they lose a lot of details. In
order to make better use of their respective advantages, we
utilize low stage information to help high stage information
to refine the spatial information and restore image details.
Nevertheless, due to the different scales of receptive views,
combining them directly will lead to inconsistent results.
As a consequence, we design a distillation attention module
to accomplish information filtering, which can select the
discriminative and effective features. As shown in Fig. 2,
we first multiply the low-level features by themselves to get
the dependence between pixels, and then obtain the attention
map through a softmax layer. The larger the softmax value,
the more reliable and stronger the relative dependence. Then
we perform a matrix multiplication between the attention
map and low-level features. Eventually, we perform an
element-wise sum operation on the new features with the
low-level features to obtain the attention feature:

f(x) = σ(w(x))× x+ x, (1)

where x is the input feature of DAM, w(x) represents the
weight map and σ denotes a softmax function.

Fig. 3. Illustration of the edge attention module (EAM)

C. Edge Attention Module
In medical images, different tissues and organs have

different shapes, as well as normal and diseased parts. In
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order to make the features of higher layers guide the extrac-
tion of edge features better, we propose the edge attention
module. As illustrated in Fig. 3, the output of EdgeBlock
and the higher features are concatenated first. Then, we use
a 1 × 1 convolutional layer to integrate features. A ReLU
activation function is used to introduce nonlinearity, followed
by another convolution operation to unify the number of
feature channels. After that, we use a softmax layer to get
the attention map. Then, we multiply it by the output of
EdgeBlock and add it to the output of EdgeBlock. At the
end of EAM, a convolutional layer is used to produce the
final attentional features. Since we input characteristics of
different stages, multi-scale information is retained.

D. Loss Function

Standard Dice loss is used for each output of predicted
semantic segmentation network and predicted boundary net-
work, which is defined as:

Ldice(y, ŷ) = 1− 2|y ∩ ŷ|
|y|+ |ŷ|

, (2)

where y and ŷ are the ground truth and predicted image.
The total loss Lt can be formulated as:

Lt = λ1Lmask + λ2Ledge, (3)

where λ1 and λ2 are the weight of two terms, satisfied with
λ1 = 0.3 and λ2 = 0.7 in this paper.

III. EXPERIMENTS AND RESULTS

To evaluate our method, we have used three different
public medical imaging datasets: ISIC2017 [9], DRIVE [10],
and LUNA [11]. The final results on these datasets are
shown in Fig. 4, which prove that our method has good
generalization performance. It can be seen that our results
are very close to the ground truth. The edges are smooth and
there are no artificially marked burrs. Even in edge regions,
our method can perform well.

Fig. 4. Visualization of segmentation results on three datasets. From left
to right: ISIC2017, DRIVE and LUNA. From top to bottom: input image,
ground truth and predictions.

A. Datasets and Evaluation Metrics

ISIC-2017: The 2017 International Skin Imaging Collab-
oration (ISIC) skin lesion segmentation challenge dataset is a
well-known skin lesion dataset, which contains 2000 training
images, 150 validation images, and 600 test images. In our

experiment, the images and their corresponding segmentation
masks are resized to 192× 256 pixels. In order to accelerate
the convergence of training, the initial weights of the encoder
network come from ResNeXt101 pretrained on ImageNet.

DRIVE: The DRIVE dataset is one of the most commonly
used retinal databases, which consists of 40 color images.
There are 20 images for training and 20 images for testing.
We resize each image to 576×544 pixels. The weights of the
encoder network are initialized using He initialization [10].

LUNA: The Lung Nodule Analysis (LUNA) competition
dataset consists of 2D and 3D CT images, and the size of
each image is 512×512. We use 267 2D samples and divided
them into 214 images for training and 53 images for testing.
As with the previous dataset, we use He initialization [10]
to initialize the encoder network.

Evaluation metrics: Accuracy (AC), sensitivity (SE),
specificity (SP), F1-score, dice coefficient (DI), Jaccard
similarity (JA), and the area under receiver operating charac-
teristics curve (AUC) are used to evaluate the performance
of the models.

B. Implementation Details

For data augmentation, random rotations between -10 and
10 degrees, random color jitters with a probability of 0.5,
horizontal and vertical flips are applied to the data. Moreover,
we also subtract the mean value of image from every RGB
channels.

Our whole framework is implement on PyTorch. We use
the Adam optimizer to train it and the initial learning rate
is set to 0.0002. When the absolute improvement of the
evaluation index is smaller than 10−3 during the last 20
epochs, the learning rate is gradually reduced by a factor
of 0.9 to improve the network performance. As for the batch
size, we set it to 16 in the ISIC2017 dataset and set it to 1
in the other two datasets.

TABLE I
RESULTS OF AEC-NET AND OTHER METHODS ON ISIC2017 DATASET.

Method year AC SE SP JA DI

UNet [1] 2015 0.923 0.808 0.978 0.739 0.828
ECDN [14] 2017 0.934 0.825 0.975 0.765 0.849

SSPFCN [15] 2018 0.938 0.855 0.973 0.773 0.857
SLSDeep [16] 2018 0.936 0.816 0.983 0.782 0.878

ours 2019 0.941 0.861 0.979 0.791 0.881

C. Performance evaluation of medical image segmentation

The proposed approach is compared with several recently
published skin lesion segmentation methods. As shown in
Table I, our model surpasses the ISIC-2017 challenge winner
(ECDN) by 2.6% and 3.2% with respect to JA and DI. We
also carry out the best performance and improve JA by 0.9%
when comparing to SLSDeep[16]. The quantitative results
on DRIVE and LUNA datasets are shown in Table II and
Table III. From Table II, it can be observed that our model
is superior to the performance of representative state-of-the-
art vessel segmentations method, with 82.88% F1-score and
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96.74% accuracy. Table III shows that the proposed approach
achieves the best performance on LUNA dataset. Compared
with ET-Net[6], our method improves F1-score by 0.67%
and accuracy by 0.81%.

TABLE II
RESULTS OF AEC-NET AND OTHER METHODS ON DRIVE DATASET.

Method Year F1-score SE SP AC AUC

R2U-Net [17] 2018 0.8171 0.7792 0.9813 0.9556 0.9784
LadderNet [18] 2018 0.8202 0.7856 0.9810 0.9561 0.9793

Unsupervised Ensemble [19] 2019 0.8225 0.8072 0.9780 0.9559 0.9779
Dual Encoding U-Net [20] 2019 0.8270 0.7940 0.9816 0.9567 0.9772

Ours 2020 0.8288 0.8173 0.9821 0.9674 0.9776

TABLE III
RESULTS OF AEC-NET AND OTHER METHODS ON LUNA DATASET.

Method Year SE SP JA F1-score AC

Residual UNet [17] 2018 0.9555 0.9945 0.9850 0.9690 0.9849
Recurrent UNet [17] 2018 0.9734 0.9866 0.9836 0.9638 0.9836

R2U-Net [17] 2018 0.9832 0.9944 0.9918 0.9823 0.9918
ET-Net [6] 2019 0.9811 0.9887 0.9922 0.9799 0.9868

Ours 2020 0.9898 0.9954 0.9926 0.9866 0.9949

D. Ablation Study

To verify the contributions of each component of our
method, we perform an ablation study with different settings
on the ISIC2017 dataset. The result is shown in Table IV.
We can observe that DAM achieves 1.47% improvement
in performance in terms of JA and 1.05% improvement in
terms of DI, which confirms the effectiveness of DAM. The
edge branch also significantly improves the performance,
which reaches 78.62% and 87.53% in relation to JA and
DI, respectively. Finally, we take advantage of style transfer
[8] for data augmentation, which can generate images with
conicting shape and texture information. In our experiment,
ten different styles of images are generated for each original
image. Ultimately, we improve on several metrics.

TABLE IV
ABLATION STUDY EXPERIMENT

Method SE SP JA DI

Baseline 0.8222 0.9703 0.7516 0.8389
Baseline + DAM 0.8168 0.9796 0.7663 0.8494

Baseline + DAM + edge 0.8337 0.9851 0.7862 0.8753
Baseline + DAM +

edge + style transfer [8] 0.8612 0.9793 0.7914 0.8814

IV. CONCLUSIONS

In this paper, we present an inventively network model
that can learn both texture and edge features. We introduce
a creatively low-level feature attention mechanism in the
encoder stage to optimize the network, which has solved
some of the problems existing in current mainstream medical
images. The results show that the new attention model,
as well as the learning of both edges and textures, have
performed the desired results. Furthermore, We do not use

any post-processing techniques and implement an end-to-
end approach. In future work, we will make better use of
prior information and apply the attention mechanism to semi-
supervised learning.
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